Abstract

Energy-efficient scheduling problems with additional resources are seldom studied in hybrid flow shops. In this study, an energy-efficient hybrid flow shop scheduling problem (EHFSP) with additional resources is studied in which there is asymmetry in the machine. An adaptive two-class teaching-learning-based optimization (ATLBO) which has multiple teachers is proposed to simultaneously minimize the makespan and the total energy consumption. After two classes are formed, a teacher phase is first executed, which consists of teacher self-learning and teacher training. Then, an adaptive learner phase is presented, in which the quality of two classes is used to adaptively decide the learner phase or the reinforcement search of the temporary solution set. An adaptive formation of classes is also given. Extensive experiments were conducted and the computational results show that the new strategies are effective and that ATLBO was able to provide better results than comparative algorithms reported in the literature in at least 54 of 68 instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.