Abstract
This paper focuses on the performance of wireless sensor networks characterized by a hybrid topology composed of mobile and static sensor nodes. The Routing Protocol for Low power and lossy networks (RPL), which is standardized as an IPv6 routing protocol for low power and lossy networks, uses the trickle timer algorithm to handle changes in the network topology. However, this algorithm is not well adapted to dynamic environments. This paper enhances the trickle timer in order to fit with mobility requirements. Most of previous works have improved this algorithm without considering the random movement of nodes. In this work, the proposed timer algorithm takes into consideration the random trajectory of mobile nodes, pause time and node's velocity. It is also dynamically adjusted to prevent from node disconnections. The performance of the modified protocol is evaluated and compared with native RPL, MERPL and RPL with reverse Trickle. The results show that our protocol optimization offers better performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.