Abstract

Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic ground truth simulation, at less than a 1% accuracy error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call