Abstract

In this paper, we propose an adaptive strategy based on the linear prediction of queue length to minimize congestion in Barabási—Albert (BA) scale-free networks. This strategy uses local knowledge of traffic conditions and allows nodes to be able to self-coordinate their accepting probability to the incoming packets. We show that the strategy can delay remarkably the onset of congestion and systems avoiding the congestion can benefit from hierarchical organization of accepting rates of nodes. Furthermore, with the increase of prediction orders, we achieve larger values for the critical load together with a smooth transition from free-flow to congestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.