Abstract

According to the World Health Organization, breast cancer is the most common cancer in women worldwide, becoming one of the most fatal types of cancer. Mammography image analysis is still the most effective imaging technology for breast cancer diagnosis, which is based on texture and shape analysis of mammary lesions. The GrowCut algorithm is a general-purpose segmentation method based on cellular automata, able to perform relatively accurate segmentation through the adequate selection of internal and external seed points. In this work we propose an adaptive semi-supervised version of the GrowCut algorithm, based on the modification of the automaton evolution rule by adding a Gaussian fuzzy membership function in order to model non-defined borders. In our proposal, manual selection of seed points of the suspicious lesion is changed by a semiautomatic stage, where just the internal points are selected by using a differential evolution algorithm. We evaluated our proposal using 57 lesion images obtained from MiniMIAS database. Results were compared with the semi-supervised state-of-the-art approaches BEMD, BMCS, Wavelet Analysis, LBI, Topographic Approach and MCW. Results show that our method achieves better results for circumscribed, spiculated lesions and ill-defined lesions, considering the similarity between segmentation results and ground-truth images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.