Abstract

An adaptive fault detection/location technique based on a phasor measurement unit (PMU) for an EHV/UHV transmission line is presented. A fault detection/location index in terms of Clarke components of the synchronized voltage and current phasors is derived. The line parameter estimation algorithm is also developed to solve the uncertainty of parameters caused by aging of transmission lines. This paper also proposes a new discrete Fourier transform (DFT) based algorithm (termed the smart discrete Fourier transform, SDFT) to eliminate system noise and measurement errors such that extremely accurate fundamental frequency components can be extracted for calculation of fault detection/location index. The EMTP was used to simulate a high voltage transmission line with faults at various locations. To simulate errors involved in measurements, Gaussian-type noise has been added to the raw output data generated by EMTP. Results have shown that the new DFT based method can extract exact phasors in the presence of frequency deviation and harmonics. The parameter estimation algorithm can also trace exact parameters very well. The accuracy of both new DFT based method and parameter estimation algorithm can achieve even up to 99.999% and 99.99% respectively, and is presented in Part II. The accuracy of fault location estimation by the proposed technique can achieve even up to 99.9% in the performance evaluation, which is also presented in Part II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.