Abstract
Continuous Stirred Tank Reactor (CSTR) is an important system in the chemical and biological industries. It's characterized by a complex nonlinear behavior and is usually affected by faults and disturbances. Therefore, the states and faults estimation of a CSTR is always a challenging task for automated process researchers and engineers. This paper proposes an adaptive observer. This paper proposes an adaptive observer in order to estimate states and actuator and sensor faults simultaneously under unknown disturbance. Firstly, the approach of the Takagi-Sugeno multi-model is proposed to transform the complex nonlinear model into several simple linear sub-models. However, the states of the considered isotherm CSTR are not completely measurable, so the multi-model is represented with non-measurable premise variables. Then, in order to transform the considered system into a system with an unknown input, a mathematical transformation is introduced to describe the sensor faults as actuator faults. The proposed observer is designed, and the exponential stability conditions are studied with the Lyapunov theory and L2 optimization and formulated in terms of linear matrix inequalities. Finally, to improve the effectiveness of the proposed observer, a numerical simulation is carried out on a CSTR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.