Abstract

Adaptive Metropolis (AM) is a powerful recent algorithmic tool in numerical Bayesian data analysis. AM builds on a well-known Markov Chain Monte Carlo algorithm but optimizes the rate of convergence to the target distribution by automatically tuning the design parameters of the algorithm on the fly. Label switching is a major problem in inference on mixture models because of the invariance to symmetries. The simplest (non-adaptive) solution is to modify the prior in order to make it select a single permutation of the variables, introducing an identifiability constraint. This solution is known to cause artificial biases by not respecting the topology of the posterior. In this paper we describe an online relabeling procedure which can be incorporated into the AM algorithm. We give elements of convergence of the algorithm and identify the link between its modified target measure and the original posterior distribution of interest. We illustrate the algorithm on a synthetic mixture model inspired by the muonic water Cherenkov signal of the surface detectors in the Pierre Auger Experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.