Abstract

An adaptive finite element method is presented for the elastic scattering of a time-harmonic plane wave by a periodic surface. First, the unbounded physical domain is truncated into a bounded computational domain by introducing the perfectly matched layer (PML) technique. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by developing an equivalent transparent boundary condition. Second, an a posteriori error estimate is deduced for the discrete problem and is used to determine the finite elements for refinements and to determine the PML parameters. Numerical experiments are included to demonstrate the competitive behavior of the proposed adaptive method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call