Abstract

AbstractConsider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable, and isotropic elastic solid, which is immersed in a homogeneous compressible air or fluid. The paper concerns the numerical solution for such an acoustic-elastic interaction problem in three dimensions. An exact transparent boundary condition (TBC) is developed to reduce the problem equivalently into a boundary value problem in a bounded domain. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by using a PML equivalent TBC. An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.