Abstract
The so called dual parametrization method for quadratic semi-infinite programming (SIP) problems is developed recently for quadratic SIP problems with a single infinite constraint. A dual parametrization algorithm is also proposed for numerical solution of such problems. In this paper, we consider quadratic SIP problems with positive definite objective and multiple linear infinite constraints. All the infinite constraints are supposed to be continuously dependent on their index variable on a compact set which is defined by a number equality and inequalities. We prove that in the multiple infinite constraint case, the minimu parametrization number, just as in the single infinite constraint case, is less or equal to the dimension of the SIP problem. Furthermore, we propose an adaptive dual parametrization algorithm with convergence result. Compared with the previous dual parametrization algorithm, the adaptive algorithm solves subproblems with much smaller number of constraints. The efficiency of the new algorithm is shown by solving a number of numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.