Abstract

An adaptive control using fuzzy basis function expansions is proposed for a class of nonlinear systems in this paper. It is shown that two system uncertainty bounds are approximated in a compact set by using fuzzy basis function expansion networks in the Lyapunov sense, and the outputs of the fuzzy networks are then used as the parameters of the controller to adaptively compensate for the effects of system uncertainties. Using this scheme, not only strong robustness with respect to unknown system dynamics and nonlinearities can be obtained, but also the output tracking error between the plant output and the desired reference output can be guaranteed to asymptotically converge to zero. Simulation results are provided to demonstrate the effectiveness, simplicity and practicality of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.