Abstract

The problem of segmenting images of objects with smooth surfaces is considered. The algorithm that is presented is a generalization of the K-means clustering algorithm to include spatial constraints and to account for local intensity variations in the image. Spatial constraints are included by the use of a Gibbs random field model. Local intensity variations are accounted for in an iterative procedure involving averaging over a sliding window whose size decreases as the algorithm progresses. Results with an 8-neighbor Gibbs random field model applied to pictures of industrial objects, buildings, aerial photographs, optical characters, and faces show that the algorithm performs better than the K-means algorithm and its nonadaptive extensions that incorporate spatial constraints by the use of Gibbs random fields. A hierarchical implementation is also presented that results in better performance and faster speed of execution. The segmented images are caricatures of the originals which preserve the most significant features, while removing unimportant details. They can be used in image recognition and as crude representations of the image. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.