Abstract

In cyber-physical systems like automotive systems, there are components like sensors, actuators, and controllers that communicate asynchronously with each other. The computational model of actors supports modeling distributed asynchronously communicating systems. We propose the Hybrid Rebeca language to support the modeling of cyber-physical systems. Hybrid Rebeca is an extension of the actor-based language Rebeca. In this extension, physical actors are introduced as new computational entities to encapsulate physical behaviors. To support various means of communication among the entities, the network is explicitly modeled as a separate entity from actors. We develop a tool to derive hybrid automata as the basis for the analysis of Hybrid Rebeca models. We demonstrate the applicability of our approach through a case study in the domain of automotive systems. We use the SpaceEx framework for reachability analysis of the case study. Compared to hybrid automata, our results show that for event-based asynchronous models hybrid Rebeca improves analyzability by reducing the number of real variables, and increases modularity and hence, minimizes the number of changes caused by a modification in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.