Abstract
This study presents a method for the active control of a follow-up lower extremity exoskeleton rehabilitation robot (LEERR) based on human motion intention recognition. Initially, to effectively support body weight and compensate for the vertical movement of the human center of mass, a vision-driven follow-and-track control strategy is proposed. Subsequently, an algorithm for recognizing human motion intentions based on machine learning is proposed for human-robot collaboration tasks. A muscle–machine interface is constructed using a bi-directional long short-term memory (BiLSTM) network, which decodes multichannel surface electromyography (sEMG) signals into flexion and extension angles of the hip and knee joints in the sagittal plane. The hyperparameters of the BiLSTM network are optimized using the quantum-behaved particle swarm optimization (QPSO) algorithm, resulting in a QPSO-BiLSTM hybrid model that enables continuous real-time estimation of human motion intentions. Further, to address the uncertain nonlinear dynamics of the wearer-exoskeleton robot system, a dual radial basis function neural network adaptive sliding mode Controller (DRBFNNASMC) is designed to generate control torques, thereby enabling the precise tracking of motion trajectories generated by the muscle–machine interface. Experimental results indicate that the follow-up-assisted frame can accurately track human motion trajectories. The QPSO-BiLSTM network outperforms traditional BiLSTM and PSO-BiLSTM networks in predicting continuous lower limb motion, while the DRBFNNASMC controller demonstrates superior gait tracking performance compared to the fuzzy compensated adaptive sliding mode control (FCASMC) algorithm and the traditional proportional–integral–derivative (PID) control algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have