Abstract
A longstanding open problem in mathematical physics has been that of finding an action principle for the Einstein–Weyl (EW) equations. In this paper, we present for the first time such an action principle in three dimensions in which the Weyl vector is not exact. More precisely, our model contains, in addition to the Weyl nonmetricity, a traceless part. If the latter is (consistently) set to zero, the equations of motion boil down to the EW equations. In particular, we consider a metric affine f(R) gravity action plus additional terms involving Lagrange multipliers and gravitational Chern–Simons contributions. In our framework, the metric and the connection are considered as independent objects, and no a priori assumptions on the nonmetricity and the torsion of the connection are made. The dynamics of the Weyl vector turns out to be governed by a special case of the generalized monopole equation, which represents a conformal self-duality condition in three dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.