Abstract

We define a Banach space $\mathcal{M}_{1}$ of models for fermions or quantum spins in the lattice with long range interactions and explicit the structure of (generalized) equilibrium states for any $\mathfrak{m}\in \mathcal{M}_{1}$. In particular, we give a first answer to an old open problem in mathematical physics - first addressed by Ginibre in 1968 within a different context - about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model $\mathfrak{m}\in \mathcal{M}_{1}$, our method provides a systematic way to study all its correlation functions and can thus be used to analyze the physics of long range interactions. Furthermore, we show that the thermodynamics of long range models $\mathfrak{m}\in \mathcal{M}_{1}$ is governed by the non-cooperative equilibria of a zero-sum game, called here the thermodynamic game.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.