Abstract

Ammonia (NH3) abatement remains controversial in China owing to its effectiveness in reducing PM2.5 pollution and nitrogen deposition but with the potential risk of promoting acid rain formation, necessitating scientific guidance. Here, we propose a novel method for designing an NH3 control strategy to mitigate both air pollution and nitrogen deposition without significantly exacerbating acid rain. This method involves extending the response surface model (RSM) to deposition using a delicately developed polynomial response function of deposition (i.e., dep-RSM). The Yangtze River Delta (YRD) dep-RSM application reveals that 16 out of 41 cities have NH3 control potentials from 15 % to 71 %. Excellent NH3 control potentials have been noted between April and June (78 %–92 %). From 2013 to 2017, the effective SO2 and NOx control significantly reduced wet sulfur and oxidized nitrogen deposition, providing considerable NH3 abatement potentials (15 %–24 %) to further reduce PM2.5 and nitrogen deposition by up to 2 % and 9 %, respectively, without acid rain exacerbation (the wet neutralization factor was maintained). Additionally, 57 % and 73 % NH3 emission reduction potentials were obtained under acid rain constraints with 75 % and 86 % reductions in the other precursors to reduce the average PM2.5 concentration below 25 and 15 μg/m3, and an additional 8408 and 14,459 premature deaths could only be avoided at an extra cost of 8.7 and 19.7 billion CNY, respectively. Meanwhile, the N deposition considerably reduced by 10 and 13 kgN/ha·yr. However, the YRD region could still simultaneously obtain substantial amounts of PM2.5 and N deposition mitigation using the strategy proposed herein. The expanded optimization system can be directly adopted by policymakers to implement coordinated control in regions or countries facing the same NH3 control conundrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call