Abstract
A new way of obtaining the algebraic relation between the nodal values in a general one-dimensional transport equation is presented. The equation can contain an arbitrary source and both the convective flux and the diffusion coefficient may vary arbitrarily. Contrary to the usual approach of approximating the derivatives involved, the algebraic relation is based on the exact solution written in integral terms. The required integrals can be speedily evaluated by approximating the integrand with Hermite splines or applying Gauss quadrature rules. The startling point about the whole procedure is that a very high accuracy can be obtained with few nodes, and more surprisingly, it can be increased almost up to machine accuracy by augmenting the number of quadrature points or the Hermite spline degree with little extra cost.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.