Abstract

A mathematical multi-species modelling framework for polymer electrolyte fuel cells (PEFCs) is presented on the basis of fundamental molecular theory. Characteristically, the resulting general transport equation describes transport in concentrated solutions and also explicitly accommodates for multi-species electro-osmotic drag. The multi-species nature of the general transport equation allows for cross-interactions to be considered, rather than relying upon the superimposition of Fick's law to account for the transport of any secondary species in the membrane region such as hydrogen. The presented general transport equation is also used to derive the key transport equations used by the historically prominent PEFC models. Thus, this work bridges the gap that exists between the different modelling philosophies for membrane transport in the literature. The general transport equation is then used in the electrode and membrane regions of the PEFC with available membrane properties from the literature to compare simulated one-dimensional water content curves, which are compared with published data under isobaric and isothermal operating conditions. Previous work is used to determine the composition of the humidified air and fuel supply streams in the gas channels. Finally, the general transport equation is used to simulate the crossover of hydrogen across the membrane for different membrane thicknesses and current densities. The results show that at 353 K, 1 atm, and 1 A/cm2, the nominal membrane thickness for less than 5 mA/cm2equivalent crossover current density is 30 μm. At 3 atm and 353 K, the nominal membrane thickness for the same equivalent crossover current density is about 150 μm and increases further to 175 μm at 383 K with the same pressure. Thin membranes exhibit consistently higher crossover at all practical current densities compared with thicker membranes. At least a 50 per cent decrease in crossover is chieved at all practical current densities, when the membrane thickness is doubled from 50 to 100 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.