Abstract

Coloured surfaces in the normal environment may be brighter or dimmer than the mean adaptation level. Changes in the firing rate of cells of the parvocellular layers of macaque lateral geniculate nucleus were studied with such stimuli; chromatic mixtures briefly replaced a white adaptation field. This paradigm is therefore one of successive contrast. Families of intensity-response curves for different wavelengths were measured. When taking sections at different luminance ratios through these families of curves, strongly opponent cells displayed spectrally selective responses at low luminance ratios, while weakly opponent cells had higher chromatic thresholds and responded well to stimuli at higher luminance ratios, brighter than the adaptation field. Strength of cone opponency, defined as the weight of the inhibitory cone mechanism relative to the excitatory one, was thus related to the range of intensity in which cells appeared to operate most effectively. S-cone inputs, as tested with lights lying along tritanopic confusion lines, could either be excitatory or inhibitory. Families of curves for different wavelengths can be simulated mathematically for a given cell by a simple model by using known cone absorption spectra. Hyperbolic response functions relate cone absorption to the output signals of the three cone mechanisms, which are assumed to interact linearly. Parameters from the simulation provided estimates of strength of cone opponency and cone sensitivity which were shown to be continuously distributed. Cell activity can be related to cone excitation in a trichromatic colour space with the help of the model, to give an indication of suprathreshold coding of colour and lightness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call