Abstract

It is generally considered that controlling a robot precisely becomes tough on the condition of unknown structure information. Applying a data-driven approach to the robot control with the unknown structure implies a novel feasible research direction. Therefore, in this article, as a combination of the structural learning and robot control, an acceleration-level data-driven repetitive motion planning (DDRMP) scheme is proposed with the corresponding recurrent neural network (RNN) constructed. Then, theoretical analyses on the learning and control abilities are provided. Moreover, simulative experiments on employing the acceleration-level DDRMP scheme as well as the corresponding RNN to control a Sawyer robot and a Baxter robot with unknown structure information are performed. Accordingly, simulation results validate the feasibility of the proposed method and comparisons among the existing repetitive motion planning (RMP) schemes indicate the superiority of the proposed method. This work offers sufficient theoretical and simulative solutions for the acceleration-level redundancy problem of redundant robots with unknown structure and joint limits considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.