Abstract

The terrestrial ecosystem in East Asia mainly consists of semi-arid regions that are sensitive to climate change. Therefore, gross primary productivity (GPP) in East Asia could be highly variable and vulnerable to climate change, which can significantly affect the local carbon budget. Here, we examine the spatial and temporal characteristics of GPP variability in East Asia and its relationship with climate factors over the last three decades. We detect an abrupt decrease in GPP over Eastern China-Mongolia region around the year 2000. This is attributed to an abrupt decrease in precipitation associated with the phase shift of the Pacific decadal oscillation (PDO). We also evaluate the reproducibility of offline land surface models to simulate these abrupt changes. Of the twelve models, eight were able to simulate this abrupt response, while the others failed due to the combination of an exaggerated CO2 fertilization effect and an underrated climate impact. For accurate prediction, it is necessary to improve the sensitivity of the GPP to changes in CO2 concentrations and the climate system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call