Abstract

AbstractA number of radiation modification approaches have been proposed to counteract anthropogenic warming by intentionally altering Earth's shortwave or longwave fluxes. While several previous studies have examined the climate effect of different radiation modification approaches, only a few have investigated the carbon cycle response. Our study examines the response of plant carbon uptake to four radiation modification approaches that are used to offset the global mean warming caused by a doubling of atmospheric CO2. Using the National Center for Atmospheric Research Community Earth System Model, we performed simulations that represent four idealized radiation modification options: solar constant reduction, sulfate aerosol increase (SAI), marine cloud brightening, and cirrus cloud thinning (CCT). Relative to the high CO2 state, all these approaches reduce gross primary production (GPP) and net primary production (NPP). In high latitudes, decrease in GPP is mainly due to the reduced plant growing season length, and in low latitudes, decrease in GPP is mainly caused by the enhanced nitrogen limitation due to surface cooling. The simulated GPP for sunlit leaves decreases for all approaches. Decrease in sunlit GPP is the largest for SAI which substantially decreases direct sunlight, and the smallest for CCT, which increases direct sunlight that reaches the land surface. GPP for shaded leaves increases in SAI associated with a substantial increase in surface diffuse sunlight, and decreases in all other cases. The combined effects of CO2 increase and radiation modification result in increases in primary production, indicating the dominant role of the CO2 fertilization effect on plant carbon uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call