Abstract

We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR, the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb BamHI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call