Abstract

Quantum chemical calculations are performed to investigate the tunability of σ-hole interactions in chalcogen-bonded XHS:PH2Y and pnicogen-bonded XH2P:SHY complexes, where X = F, Cl, Br and Y = H, OH, OCH3, CH3, C2H5, NH2. The formation of these binary complexes can be understood in terms of molecular electrostatic potentials (MEPs), considering the P and S atoms as an electron acceptor or an electron donor in the chalcogen and pnicogen bonds. The strength of the XHS:PH2Y and XH2P:SHY complexes for a given Y increases as follows: X = Br < Cl < F. In addition, an acceptable linear relationship is found between the interaction energies and the magnitudes of the product of most positive and negative MEPs. This finding along with the electron density difference maps provides a clear picture of the electrostatic nature of the interactions in the XHS:PH2Y and XH2P:SHY complexes. The calculated spin-spin coupling constants across the chalcogen bond interactions in the XHS:PH2Y complexes display a quadratic dependence with the P···S binding distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call