Abstract

The global energy demand is steadily increasing because of the population explosion and economic growth. Fossil fuels supply around 85 % of global primary energy demand. On one hand, fulfilling the increasing energy demands is a big challenge for the next few decades. On the other hand, the continued burning of fossil fuels leads to higher CO2 emissions, severely impacting global warming. Therefore, the policymakers vow to shift from conventional fuels to renewable resources for economic, environmental, and future energy security reasons. In this context, biofuels from lignocellulosic biomass and/or carbon-neutral fuels produced in the sustainable carbon cycle can close the carbon cycle and reach net zero-carbon emission. Recently, glycerol carbonate has been proposed as a promising fuel or fuel additive for future sustainability. Therefore, we investigated the hydrogen abstraction reactions of glycerol carbonate (GC) by OH radicals using high-level ab initio and variational transition state theory calculations. We mapped out the potential energy surface using the CCSD(T)/cc-pV(D, T)Z//MP2/cc-pVTZ level of theory. We used the ab initio parameters to obtain the site-specific rate coefficients by employing the variational transition state theory. We observed that every hydrogen atom in GC displays a unique reactivity with OH radicals. We derived branching ratio of each channel that are difficult to access experimentally. The overall rate coefficients exhibit a strong non-Arrhenius behaviour, which can be represented as:kovCVT/SCT(T)=3.39×10−20×T2.659×e−750.0Jmol−1RTcm3moleculesThis is the first reported rate data for the glycerol carbonate and OH radicals reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.