Abstract

Keto-enol tautomerisms are important reactions in gaseous and liquid systems with implications in different chemical environments, but their kinetics have not been widely investigated. These reactions can proceed via a unimolecular process or may be catalyzed by another molecule. This work presents a theoretical study of the HO2-catalyzed tautomerism that converts propen-2-ol into acetone at conditions relevant to combustion, atmospheric and interstellar chemistry. We performed CCSD(T)/aug-cc-pVTZ//M06-2X/cc-pVTZ ab initio and multistructural torsional variational transition state theory calculations to compute the forward and reverse rate constants. These rate constants have not been investigated previously, and modelers approximate the kinetics by comparison to analogue reactions. Two features of the potential energy surface of the studied tautomerism are highlighted. First, the HO2 radical exhibits a pronounced catalytic effect by inducing a double hydrogen atom transfer reaction with a much lower barrier than that of the unimolecular process. Second, a prereactive complex is formed with a strong OH···π hydrogen bond. The role of the studied reaction under combustion conditions has been assessed via chemical kinetic modeling of 2-butanol (a potential alternative fuel) oxidation. The HO2-assisted process was found to not be competitive with the unimolecular and HCOOH-assisted tautomerisms. The rate constants for the formation of the prereactive complex were calculated with the variable reaction coordinate transition state theory, and pressure effects were estimated with the system-specific quantum Rice-Ramsperger-Kassel theory; this allowed us to investigate the role of the complex by using the canonical unified statistical model. The formation and equilibration of the prereactive complex, which is also important at low pressures, enhances the reactivity by inducing a large tunneling effect that leads to a significant increase of the rate constants at cold and ultracold temperatures. These findings may help to understand and model the fate of complex organic molecules in the interstellar medium, and suggest an alternative route for the high energy barrier keto-enol tautomerism which otherwise is not kinetically favored at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call