Abstract

In this work we present an a posteriori high-order finite volume scheme for the computation of compressible turbulent flows. An automatic dissipation adjustment (ADA) method is combined with the a posteriori paradigm, in order to obtain an implicit subgrid scale model and preserve the stability of the numerical method. Thus, the numerical scheme is designed to increase the dissipation in the control volumes where the flow is under-resolved, and to decrease the dissipation in those cells where there is excessive dissipation. This is achieved by adding a multiplicative factor to the dissipative part of the numerical flux. In order to keep the stability of the numerical scheme, the a posteriori approach is used. It allows to increase the dissipation quickly in cells near shocks if required, ensuring the stability of the scheme. Some numerical tests are performed to highlight the accuracy and robustness of the proposed numerical scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.