Abstract

An 8-bit, 3.2 GS/s, time interleaved (TI) successive approximation register (SAR) analog-to-digital converter (ADC) with a non-buffered hierarchical demultiplexing architecture is proposed and fabricated. Compared to a typical hierarchical TI-ADC, (i) all track-and-hold (T&H) related noise sources and (ii) wide-band amplifiers for buffering of the input signal are avoided. In this way, the proposed solution can improve the signal-to-noise-ratio and reduce power consumption. The concept is demonstrated in an 8-bit 3.2 GS/s TI-ADC design based on 32 asynchronous SAR ADCs and fabricated in a 0.13μm CMOS process. The prototype includes (i) a programmable delay cell array to adjust four front sampling phases, and (ii) a 25.6 Gb/s low voltage differential signaling (LVDS) interface. Measurements of the fabricated TI-ADC show 44.6 dB of peak signal-to-noise-and-distortion ratio and 105 mW of power consumption at 1.2 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.