Abstract

This paper describes an 8 Mb SRAM test chip that has been designed and fabricated in a 45 nm Silicon-On-Insulator (SOI) CMOS technology. The test chip comprises of sixteen 512 kb instances and is designed for use as the principal compilable one-port embedded-SRAM block in a 45 nm ASIC library. Challenges associated with SRAM cell design in SOI are overcome and resulted in a cell size of 0.315 mum <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The paper introduces two circuit techniques that address the AC and DC power consumption issues facing today's embedded-SRAMs. The first technique addresses AC power dissipation by utilizing a two-stage, body-contacted sensing scheme that, among other improvements, achieves a 68% improvement in read power under constant voltage and frequency compared to the previous generation macro . The second technique addresses the DC power consumption by introducing a single-device, header based dynamic leakage suppression scheme that reduces total macro leakage power by 38% with no wake-up cycle requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.