Abstract
Lipid rafts are regions of the plasma membrane that are enriched in cholesterol, glycosphingolipids and acylated proteins, and which have been proposed as sites for the proteolytic processing of the Alzheimer's amyloid precursor protein (APP). Lipid rafts can be isolated on the basis of their insolubility in Triton X-100 at 4 degrees C, with the resulting low-density, detergent-insoluble glycolipid-enriched fraction (DIG) being isolated by flotation through a sucrose density gradient. The detergent-insolubility of APP in mouse cerebral cortex relative to a variety of DIG marker proteins (alkaline phosphatase, flotillin, F3 protein and prion protein) and non-DIG proteins (alkaline phosphodiesterase I, aminopeptidase A and clathrin) has been examined. Alkaline phosphatase, flotillin, F3 protein and the prion protein were present exclusively in the DIG region of the sucrose gradient over a range of protein/detergent ratios used to solubilize the membranes and displayed a characteristic enrichment in the low-density fraction as the protein/detergent ratio was decreased. In contrast, most of the APP, alkaline phosphodiesterase I, aminopeptidase A and clathrin was effectively solubilized at all of the protein/detergent ratios examined. However, a minor proportion of these latter proteins was detected in DIGs at levels which remained constant irrespective of the protein/detergent ratio. When DIGs were isolated from the sucrose gradients and treated with excess Triton X-100, both the DIG marker proteins and APP, alkaline phosphodiesterase I and clathrin were predominantly resistant to detergent extraction at 37 degrees C. These results show that, although a minor proportion of APP is present in DIGs, where it is detergent-insoluble even at 37 degrees C, it behaves as an atypical lipid raft protein and raises questions as to whether lipid rafts are a site for its proteolytic processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.