Abstract

An analysis of a large number of cases of 500 hPa height monthly prediction shows that systematic errors exist in the zonal mean components which account for a large portion of the total forecast errors, and such errors are commonly seen in other prediction models. To overcome the difficulties of the numerical model, the authors attempt a "hybrid" approach to improving the dynamical extended-range (monthly) prediction. The monthly pentad-mean nonlinear dynamical regional prediction model of the zonal-mean geopotential height (wave number 0) based on a large amount of data is constituted by employing the reconstruction of phase-space theory and the spatio-temporal series predictive method. The dynamical prediction of the numerical model is then combined with that of the nonlinear model, i.e., the pentad-mean zonal-mean height produced by the nonlinear model is transformed to its counterpart in the numerical model by nudging during the time integration. The forecast experiment results show that the above hybrid approach not only reduces the systematic error in zonal mean height by the numerical model, but also makes an improvement in the non-axisymmetric components due to the wave-flow interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call