Abstract
AbstractIn the present work, treating the arteries as a tapered, thin walled, long, and circularly conical prestressed elastic tube and using the reductive perturbation method, we have studied the amplitude modulation of nonlinear waves in such a fluid‐filled elastic tube. By considering the blood as an incompressible non‐viscous fluid, the evolution equation is obtained as the nonlinear Schrödinger equation with variable coefficients. It is shown that this type of equations admit a solitary wave type of solution with a variable wave speed. It is observed that the wave speed increases with distance for narrowing tubes while it decreases for expanding tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.