Abstract
In the present work, treating the large arteries as a thin-walled, long and circularly cylindrical, prestressed elastic tube with variable cross-section and using the reductive perturbation method, we have studied the amplitude modulation of non-linear waves in such a fluid-filled elastic tube. By considering the blood as an incompressible viscous fluid, the evolution equation is obtained as the dissipative non-linear Schrödinger equation with variable coefficients. It is shown that this type of equations admit a solitary wave solution with a variable wave speed. It is observed that, the wave speed increases with distance for narrowing tubes while it decreases for expanding tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.