Abstract

Amplified luminescence quenching has been demonstrated in metal-organic frameworks (MOFs) composed of Ru(II)-bpy building blocks with long-lived, largely triplet metal-to-ligand charge-transfer excited states. Strong non-covalent interactions between the MOF surface and cationic quencher molecules coupled with rapid energy transfer through the MOF microcrystal facilitates amplified quenching with a 7000-fold enhancement of the Stern-Völmer quenching constant for methylene blue compared to a model complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.