Abstract
Two non-porous metal–organic frameworks (MOFs) with caged Ru(bpy)32+ chromophores, [Ru(bpy)3][Zn2(C2O4)3] (1) and [Ru(bpy)3][NaAl(C2O4)3] (2), were synthesized and characterized. Their emission properties were studied by both steady-state and time-resolved luminescence measurements. Air-free microcrystals of 1 and 2 exhibit long-lived triplet metal-to-ligand charge transfer (3MLCT) excited states with lifetimes of 760 and 1305 ns, respectively. Lifetimes are significantly shortened (to 92 ns for 1 and 144 ns for 2) by trapping of trace amounts of oxygen in the non-porous MOFs, presumably due to amplified luminescence quenching of Ru(bpy)32+*. Following MLCT excitation, Ru(bpy)32+*/Ru(bpy)32+ energy transfer migration in 1 and 2 results in efficient quenching of Ru(bpy)32+* by Os(bpy)32+ added as an energy transfer trap at doping levels of 0.2–1.0%. A kinetic analysis indicates that the three-dimensional chromophore connectivity in 1 and 2 provides a network for rapid excited state energy transfer migration among Ru(bpy)32+ units, ultimately, finding an Os(bpy)32+ trap site. These crystalline frameworks with caged chromophores have proven to be ideal systems for studying light harvesting processes in artificial supramolecular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.