Abstract

The demand for simple, sensitive, affordable, and selective DNA biosensors is willing, due to the important role of DNA detection in the areas of disease diagnostics, environment monitoring and food safety. The presented work is devoted to the fabrication of an ultrasensitive homogeneous biosensor for the detection of DNA sequences related to HIV based on fluorescence resonance energy transfer(FRET) between carbon dots(CDs) and AuNPs as nanoquenchers. CDs as fluorophore with average size 3–4nm were prepared by hydrothermal treatment of histidine. In this respect, the hybridization was occurring between the assemblies of fluorescence CDs functionalized 5-amino-labeled oligonucleotides as capture probe and label free oligonucleotides as detection probe. Due to strong fluorescence and good biocompatibility of CDs, the capture probe was covalently conjugated to CDs. In the presence of the target probe, the association between capture probe-CDs and detection probe is stronger than that between capture probe-CDs and AuNPs, leading to the release of the capture probe-CDs from AuNPs, resulting in the recovery of the fluorescence of CDs. This oligonucleotides detection probe was observed to detect target oligonucleotides specifically and sensitively in a linear range from 50.0fM to 1.0nM with a detection limit of 15fM. Furthermore, the sensitivity of this FRET strategy amplified using AuNPs/graphene oxide nanocomposite as quencher. The Sensor response indicates only the complementary sequence showing an obvious change signal in comparison to non-complementary and two bases mismatched sequences. Moreover, satisfactory results from determination of HIV DNA target in human serum were obtained showing great potential of the proposed method for real sample analysis. The proposed biosensor with highly biocompatibility and nontoxicity, can be developed for detection of other DNA biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.