Abstract

The perforant path forms a monosynaptic connection between the cells of layer II of the entorhinal cortex and the pyramidal cells in hippocampal area CA3. Although this projection is prominent anatomically, very little is known about the physiological properties of this input. The distal location of these synapses suggests that somatically recorded perforant-path excitatory postsynaptic potentials (EPSPs) may be influenced by the activation of voltage-dependent channels in CA3 cells. We observed that perforant-path EPSPs are reduced (by approximately 25%) by blockade of postsynaptic low-voltage-activated calcium and sodium channels, indicating that perforant-path EPSPs are amplified by the activation of these channels. These data suggest that the perforant path may represent an important and highly modifiable direct connection between the entorhinal cortex and area CA3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call