Abstract
Uniquely amphoteric soy protein (SP)-rich ultra-fine fibers (231 nm average diameter) have been facilely electrospun from aq. colloids and rendered water-insoluble by heating (150 °C, 12 h) to be highly stable over 14 d (pH 7) as well as under extremely acidic to basic (pH 0–10, 2 d) or at boil (2 h) conditions. The SP-rich fibrous membranes are easily tuned to be charged either negatively by deprotonation above or positively by protonation below the 4.5 PI of SPs. This pH-responsive amphoterism has been demonstrated for rapid adsorption of either cationic or anionic dyes, selective adsorption of either dye from their mixtures, and repetitive adsorption/desorption to recover and reuse both dyes and membranes. Chemisorption and heterogeneous adsorption of ionic dyes was confirmed by close fitting to the pseudo-second-order kinetic model (R2 = 0.9977–0.9999) and Freundlich adsorption isotherm (R2 = 0.9879). This is the first report of water-resilient and pH-robust ultrafine fibrous membranes fabricated from aqueous colloids of neat globular SPs, the major byproducts of under-utilized edible oil and biodiesel. The natural polyampholyte origin, amphoterism, and green processing make these fibrous materials unique and versatile for many potential applications involving both anionic and cationic species.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have