Abstract

The Garland Peak Syenite (GPS) of the Red Hill complex, New Hampshire, consists predominantly of amphibole, oligoclase, perthite, and quartz; amphiboles have homogeneous kaersutite cores with strongly zoned rims ranging in composition from pargasite to hastingsite to hornblende. The thin section scale association of kaersutite, an amphibole that typically crystallizes in silica-undersaturated magmas, with quartz suggests that the GPS magma experienced substanital changes in magmatic composition, including silica activity, during its crystallization history. Kaersutite-bearing camptonites are also associated with the Red Hill complex. The camptonite amphiboles are very similar in composition to the core kaersutites in the GPS, suggesting that the earliest GPS liquid may have had camptonitic affinities. In order to elucidate the process where-by silica-undersaturated magmas differentiate to saturation, amphiboles in these rocks were analyzed by electron and ion microprobe techniques. Amphiboles show a progressive increase in REE abundances from the camptonites to the GPS kaersutite cores to the GPS pargasite/hastingsite/hornblende rims. The systematic change in REE concentrations, and the variations in V, Ti, Sr versus Zr, Eu/Eu0 and La/Yb versus Ce, suggest a possible differentiation relationship for the amphiboles and imply that the GPS was derived from magmas similar to camptonites. Rimward depletions in Sr, Ti, V, and Eu/Eu0, and the increase in La/Yb values suggest that parental camptonites fractionated plagioclase, magnetite, and amphibole to produce the silica-oversaturated GPS. Bulk-rock modelling agrees with the trace element record preserved in the amphiboles, that plagioclase, magnetite, and amphibole fractionation caused silica saturation. Minor pegmatitic patches occur in the GPS. Ferrohornblendes in the pegmatites have REE abundances distinct from the other GPS amphiboles, and this difference may be due to open system processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.