Abstract

The Tannuola terrane, located in the northern Central Asian Orogenic Belt, comprises magmatic rocks, attributed to island-arc and collisional settings during the Early Cambrian to the Late Ordovician. However, zircon U-Pb age, geochemical, and Sr-Nd isotopic constraints demonstrate that there was a short episode of peralkaline A-type granite magmatism in the northeast border area of the Tannuola terrane. The obtained zircon U-Pb age of 387.7 ± 3.3 Ma indicates emplacement of the peralkaline A-type granitic rocks in the Middle Devonian (Eifelian–Givetian period boundary). Petrologically, these rocks are mainly composed of riebeckite granites and aplites, which are approximately synchronous with augite-rich dolerites. The granitic rocks are ferroan and calc-alkalic to alkali-calcic in composition. They are characterized by a high content of SiO2, total alkali, Zr, and total REE. Significant depletion of Ba, Sr, P, Ti, and Eu indicates fractionation of plagioclase and/or K-feldspar. The values of εNd(t) in riebeckite granites range from +5.61 to +6.55, and the calculated two-stage model age ranges between 610 and 520 Ma. Coeval dolerites on the chondrite-normalized REE pattern, (Th/Yb)pm–(Nb/Yb)pm, and Th/Yb–Nb/Yb diagrams show compositional affinity between E-MORB and OIB. They are rich in incompatible elements with high HFSE/LREE ratios (Nb/La > 1), indicating that the primary magma originated from the lithospheric mantle metasomatized by asthenosphere-derived melt. Based on these geochemical characteristics, it can be reasonably inferred that the peralkaline A-type granitic rocks, and the coeval mafic rocks, are anorogenic and were emplaced in an extensional tectonic environment despite slightly higher Y/Nb values, which might be caused by a crustal contamination effect. The geochemistry of mafic rocks suggests that the magma originated from the enriched mantle sources. The results of a zircon-saturation thermometer show high initial magma temperatures between 923 and 1184 °C, with an average of 1030 °C, indicating this rock association might be related to a mantle plume beneath the northern Central Asian Orogenic Belt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call