Abstract

This work reports the first bioplatform able to determine electrochemically 5-hydroxymethylcytosine (5-hmC) methylation events at localized sites and single-base sensitivity. The described bioplatform relies on a specific antibody (anti-5-hmC), further conjugated with commercial bioreagents loaded with multiple horseradish peroxidase (HRP) molecules, recognizing the epimark in a target DNA, captured through hybridization onto streptavidin-magnetic microbeads (Strep-MBs) modified with a complementary DNA capture probe. The electrochemical detection is performed by amperometry (-0.20 V vs Ag pseudoreference electrode) at disposable screen-printed carbon electrodes (SPCEs) in the presence of H2O2/hydroquinone (HQ) upon magnetic capture of the modified MBs onto the SPCE. The use of the commercial bioreagents ProtA-polyHRP80 and Histostar, very scarcely explored so far in electrochemical biosensors, provides high sensitivities for a synthetic target DNA sequence with a unique 5-hmC in the promoter region of MGMT tumor suppressor gene. Amplification factors of 43.6 and 55.2 were achieved using ProtA-polyHRP80 or Histostar, respectively, compared to the conventional secondary antibody labeling. This amplification was crucial to detect methylation events at single-nucleotide resolution achieving limits of detection (LODs) of 23.0 and 13.2 pM, respectively, without any target DNA amplification. The ProtA-polyHRP80-based bioplatform, selected as a compromise between sensitivity and cost per determination, exhibited full discrimination toward the target 5-hmC against the closely related 5-mC. In addition, the bioplatform detected 5-hmC at the regional level (MGMT promoter region) in just 10 ng of genomic DNA (gDNA, ∼2700 genomes) extracted from cancer cells and tissues from colorectal cancer (CRC) patients within 60 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call