Abstract

In-situ electrochemical deposition of cobalt hexacyanoferrate (CoHCF) on graphene oxide (GO) and its application for the electrocatalytic hydrazine determination in real samples are described in this research study. Co2+ is immobilized on GO and the resulting material, GO-Co2+ is coated on the surface of glassy carbon (GC) electrode. The fabricated electrode (GC/GO-Co2+) is subjected to a continuous potential cycling in the range of 0.0–1.0 V which results in the formation of a thin CoHCF film on the surface of GO coated on the GC electrode (abbreviated as GC/GO-CoHCF). The synthesized GO-CoHCF composite material is characterized by Fourier transform infrared and scanning electron microscopy. GC/GO-CoHCF electrode electrocatalytically oxidizes hydrazine at low overpotential (0.63 V) and this phenomenon is subsequently utilized for the sensitive determination of hydrazine in aqueous solutions. It exhibits a wide linear calibration range (0.1–400 µM), high sensitivity (0.93 µA µM−1 cm−2) and low limit of detection (17.5 nM) for the determination of hydrazine. Further, this electrode is employed for hydrazine determination in real samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call