Abstract
Acute increases in the concentration of malonyl-CoA play a pivotal role in mediating the decrease in fatty acid oxidation that occurs in many tissues during refeeding after a fast. In this study, we assess whether such increases in malonyl-CoA in liver could be mediated by malonyl-CoA decarboxylase (MCD), as well as acetyl-CoA carboxylase (ACC). In addition, we examine how changes in the activity of ACC, MCD, and other enzymes that govern fatty acid and glycerolipid synthesis relate temporally to alterations in the activities of the fuel-sensing enzyme AMP-activated protein kinase (AMPK). Rats starved for 48 h and refed a carbohydrate chow diet for 1, 3, 12, and 24 h were studied. Refeeding caused a 40% decrease in the activity of the alpha1-isoform of AMPK within 1 h, with additional decreases in AMPKalpha1 activity and a decrease in AMPKalpha2 occurring between 1 and 24 h. At 1 h, the decrease in AMPK activity was associated with an eightfold increase in the activity of the alpha1-isoform of ACC and a 30% decrease in the activity of MCD, two enzymes thought to be regulated by AMPK. Also, the concentration of malonyl-CoA was increased by 50%. Between 1 and 3 h of refeeding, additional increases in the activity of ACC and decreases in MCD were observed, as was a further twofold increase in malonyl-CoA. Increases in the activity (60%) and abundance (12-fold) of fatty acid synthase occurred predominantly between 3 and 24 h and increases in the activity of mitochondrial sn-glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA:diaclyglycerol acyltransferase (DGAT) at 12 and 24 h. The results strongly suggest that early changes in the activity of MCD, as well as ACC, contribute to the increase in hepatic malonyl-CoA in the starved-refed rat. They also suggest that the changes in these enzymes, and later occurring increases in enzymes regulating fatty acid and glycerolipid synthesis, could be coordinated by AMPK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.