Abstract
This article presents design considerations pertinent to amorphous silicon (a-Si:H) pixel drive circuits for mobile display applications. We describe both pixel architectures and circuit topologies that are amenable for vertically stacked organic light-emitting diode (OLED) pixels in a-Si:H technology. Here, a dual-gate transistor structure is used to minimize the parasitic coupling between the OLED and the transistor layers. We consider both the two-transistor (2-T) voltage-programmed drive circuit and the five-transistor (5-T) current-programmed drive circuit. The latter provides compensation for shifts in device characteristics by virtue of metastable shifts in the threshold voltage of the thin-film transistor (TFT). Implementation of the 5-T drive circuit using dual-gate TFTs that enables high aperture ratio (∼100%), low leakage current, and surface emissive OLED pixels that are independent of scaling is also presented, along with simulation results of transfer characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.