Abstract
Transition-metal selenides have been extensively studied as promising electrode materials for supercapacitors. Engineering amorphous/crystalline heterostructures is an effective strategy to improve rich active sites for accelerating redox reaction kinetics but still lacks exploration. In this study, an amorphous/crystalline heterostructure was designed and constructed by selenizing the self-sacrificial template NiMnS to generate amorphous Mn/polycrystalline Ni0.85Se-NiSe2 heterophase via the phase transformation from metal sulfide into metal selenide. The synergy of the complementary multi-components and amorphous/polycrystalline heterophase could enrich electron/ion-transport channels and expose abundant active sites, which accelerated electron/ion transfer and Faradaic reaction kinetics during charging/discharging. As expected, the optimal NiMnSe exhibited a high specific charge (1389.1 C g-1 at 1Ag-1), a good rate capability, and an excellent lifespan (88.9% retention). Moreover, the fabricated NiMnSe//activated carbon device achieved a long cycle life and energy density of 48.0Whkg-1 at 800Wkg-1, shedding light on the potential for use in practical applications, such as electrochemical energy-storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.