Abstract
Electrochemical energy storage (EES) and conversion devices (e.g. batteries, supercapacitors, and reactors) are emerging as primary methods for global efforts to shift energy dependence from limited fossil fuels towards sustainable and renewable resources. These electric-based devices, while showing great potential for meeting some key metrics set by conventional technologies, still face significant limitations. For example, an EES device tends to exhibit large energy density (e.g. lithium-ion battery) or power density (e.g. supercapacitor), but not both. This inability of a single device to simultaneously achieve both metrics represents a major obstacle to widespread adoption of EES devices. Improvements in materials, such as the integration of 2D materials (e.g. graphene, dichalcogenides, MXene, etc.) into electrochemical devices has yielded some exciting results towards tackling this issue, but significant improvements are still needed. Our approach to simultaneously achieving high energy and power density is to focus on one of the fundamental processes that occur in these systems: mass (or charge) transport. The efficient transport of ions within EES devices is critical to realizing both large power and energy densities. The pore structure of the electrode is a key factor in determining this transport phenomena, but in many cases, engineering the pore structure in a highly deterministic fashion is not pursued or even possible for many electrode materials. In this work, we explore a number of additive manufacturing methods (e.g. direct ink write, projection microstereolithography, etc.) to engineer the pore structure of device electrodes. We also determine effective electrode geometries using both simple theory and topology optimization techniques. The topology optimization couples the solution of the forward electrochemical problem over the full electrode domain with gradient-based optimization. The output of our code is a three-dimensional CAD representation which optimizes over specific performance metrics and which can be used to print functional electrodes. This work provides a systematic path toward automatic design and fabrication of engineered electrodes with precise control over the fluid and species distribution.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.