Abstract

Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400 °C in RTA for 1 min and up to at least 700 °C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi3 phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12 nm and 1.2 nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500 °C. The resistivity of the films as-deposited are around 200 μΩ·cm. The work function of the alloy is fixed at close to the Ta work function of 4.6 eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call