Abstract

The amorphization and dislocation evolution mechanisms of a single crystal 6H-SiC were systematically investigated by using nano-indentation, high-resolution transmitted electron microscope (HRTEM), molecular dynamics (MD) simulations and the generalized stacking fault (GSF) energy surface analysis. Two major plastic deformation mechanisms of 6H-SiC under nano-indentation were revealed by HRTEM, i.e., (1) an amorphization region near the residual indentation mark, and (2) dislocations below the amorphization region in both the basal and prismatic planes. MD results showed that the amorphization process corresponds to the first “pop-in” event of the indentation load-displacement curve, while the dislocation nucleation and propagation are related to the consequent “pop-in” events. The amorphization is confirmed to achieve via an initial transformation from wurtzite structure to an intermediate structure, and then a further amorphization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.